Functional MRI using super-resolved spatiotemporal encoding.
نویسندگان
چکیده
Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneities including those caused by B(0) inhomogeneities and chemical shift offsets. Utilizing the inherent robustness of SPEN, it was previously shown that RASER can be used to successfully perform functional MRI (fMRI) experiments in the orbitofrontal cortex--a task which is challenging using EPI due to strong magnetic susceptibility variation near the air-filled sinuses. Despite this superior performance, systematic analyses have shown that, in its initial implementation, the use of SPEN was penalized by lower signal-to-noise ratio (SNR) and higher radiofrequency power deposition as compared to EPI-based methods. A recently developed reconstruction algorithm based on super-resolution principles is able to alleviate both of these shortcomings; the use of this algorithm is hereby explored within an fMRI context. Specifically, a series of fMRI measurements on the human visual cortex confirmed that the super-resolution algorithm retains the statistical significance of the blood oxygenation level dependent (BOLD) response, while significantly reducing the power deposition associated with SPEN and restoring the SNR to levels that are comparable with those of EPI.
منابع مشابه
Super-resolved parallel MRI by spatiotemporal encoding.
Recent studies described an "ultrafast" scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive ultrafast MRI acquisition alternative, entails exploiting parallel imaging algorithms w...
متن کاملSuper-resolved spatially encoded single-scan 2D MRI.
Single-scan MRI underlies a wide variety of clinical and research activities, including functional and diffusion studies. Most common among these "ultrafast" MRI approaches is echo-planar imaging. Notwithstanding its proven success, echo-planar imaging still faces a number of limitations, particularly as a result of susceptibility heterogeneities and of chemical shift effects that can become ac...
متن کاملIn vivo 3D spatial/1D spectral imaging by spatiotemporal encoding: a new single-shot experimental and processing approach.
A novel method for acquiring and processing quality multislice spectroscopically resolved 2D images in a single shot is introduced and illustrated. By contrast to the majority of single-scan spectroscopic imaging sequences developed so far, the method here discussed is not based on the acquisition of echo planar data in the k/t-space, but rather on the use of recently proposed spatiotemporal en...
متن کاملParametric analysis of the spatial resolution and signal-to-noise ratio in super-resolved spatiotemporally encoded (SPEN) MRI.
PURPOSE Spatiotemporally Encoded (SPEN) MRI is based on progressive point-by-point refocusing of the image in the spatial rather than the k-space domain through the use of frequency-swept radiofrequency pulses and quadratic phase profiles. This technique provides high robustness against frequency-offsets including B0 inhomogeneities and chemical-shift (e.g., fat/water) distortions, and can cons...
متن کاملAutomatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance imaging
دوره 30 10 شماره
صفحات -
تاریخ انتشار 2012